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This report provides some results related to the investigation of the correlation between organic 
pollution and Intercalibration metrics. These results are derived from the REBECCA WP4 
deliverable that will be published at the end of autumn 2006. Detailed information on the analyses 
run and on the data used can be found in this deliverable. 
 
One of the aims of the project was to investigate the relationship between organic pollution and 
biological metrics. The first stage involved combining chemical parameters in order to provide a 
single abiotic descriptor to quantify organic pollution. Invertebrate intercalibration metrics were 
also calculated. ICMs and STAR_ICMi were thus correlated to the newly developed organic 
pollution descriptor. 
 
Calculation of an abiotic organic descriptor index 
 
The organic pollution descriptor was obtained by assigning a score to the observed concentration of 
single chemical parameters. Decreasing scores are assigned with reference to boundaries obtained 
as multiples of the 75th percentile of values found in reference sites. Each chemical variable is 
assigned a score according to the observed concentration so that the result ranges between 0 and 1 
(see Table 1).  
 
Table 1. Criteria used  for  the definition of classes when assigning scores  to chemical parameters. A =   75th 
percentile of reference sites. 
 

 Class 
 I II III IV V 
      

Boundary <1*A <2*A <4*A <8*A >8*A 
      

Score 1 0.5 0.25 0.125 0.0625 
 
The scores obtained from each chemical parameter are averaged to obtain the final index value (site 
score). The variables considered for scoring are: O2%, BOD5, COD, N-NH4, N-NO3, NO2, PO4, 
TP, Chloride and E. coli. Not all variables were recorded for all samples considered so the final site 
score may be based on e.g. 5 out of the 10 variables (e.g. O2%, BOD5, N-NO3, Chloride and E. 
coli). On average, more than 8 or 5 variables were available for Italy and Slovakia, respectively and 
thus used for each sample to derive the site score for the organic pollution indicator. 
 
Calculation of determination coefficients between organic pressures and intercalibration metrics 
 
The following tables present some examples of r2 values between intercalibration metrics and the 
organic pollution descriptor from a selection of datasets provided for the REBECCA project. Data 
presented below were derived from Italian and Slovak monitoring networks and from AQEM 
Italian data. 



 
Some examples from Italian data 
 
Table 2 shows determination coefficients for Italian monitoring data (Italian Environment Agency 
from VENETO and EMILIA-ROMAGNA Regions, Northern Italy) R-M1, R-M2 and R-M3 all 
combined. The Iberian ASPT and the Number of selected families of ETD (Ephemeroptera, 
Trichoptera and Diptera) are the best performing metrics. The Pearson coefficients of these metrics 
are comparable to the number of EPT families and to the ICM indices. Notable coefficients are also 
obtained by the metric based on the abundance of selected taxa of Ephemeroptera, Plecoptera, 
Trichoptera and Diptera (Log_SelEPTD). In general, coefficients are not very high. This may be 
explained by the fact that only organic pollution was quantified in these examples and no 
information was available on other acting pressures. For comparison, the r2 values obtained by the 
IBE index (official method in Italy before the WFD) are shown in the following tables. 
 
Table 2. Pearson coefficients of determination in Italian data (ARPA data).  

 Org_descriptor 
  r² P 
ASPT 0.29 3E-13 
Iberian ASPT 0.34 5E-10 
No of EPT Families 0.30 1E-08 
Total No of Families 0.02 0.225 
1-GOLD 0.01 0.1632 
Shannon Diversity 0.006 0.3206 
Log_SelEPTD+1 0.24 6E-11 
No of Selected Families of ETD / Total No of Families 0.35 5E-10 
STAR_ICMi 0.32 2E-09 
MedQual_ICMi 0.31 4E-09 
IBE 0.13 0.0003 

 
In table 3 determination coefficients are shown for Italian data from R-M1 from Southern Italy. 
These data were collected within the AQEM project (Buffagni et al., 2004). Total number of 
families was the poorest performing metric (lowest coefficient), while abundance-based metrics 
showed a good relationship with the organic pollution descriptor. The qualitative mediterranean 
index gave a similar performance to the STAR ICMi. The mediterrannean qualitative index 
comprises metrics that are primarily developed to detect organic pollution, while the STAR_ICMi 
also comprises metrics developed to detect habitat degradation. The mediterranenan qualitative 
index, therefore, would be expected to show a stronger relationship with the organic pollution 
descriptor than the STAR ICMi. It should be noted that the mediterranenan ICMi does not take 
abundance into account and is not considered to be fully WFD-compliant. 
 
Table 31. Pearson coefficients of determination for the different options of deriving the organic pollution descriptors 
and selected biological metrics in Southern Italy (AQEM data; N=66).  

 Org_descriptor 
 r² p 

ASPT 0.61 7E-15 

Iberian ASPT 0.63 2E-15 

No of EPT Families 0.59 8E-14 

Total No of Families 0.28 4E-06 

1-GOLD 0.39 2E-08 

Shannon Diversity 0.43 2E-09 

log(SelEPTD+1) 0.60 2E-14 

No of Selected Families of ETD / Total No of Families 0.72 2E-19 



STAR_ICM index 0.67 5E-17 

Med_ICM index 0.68 2E-17 

IBE 0.40 1E-08 
 
Both multimetric indices developed for intercalibration purposes gave a better response to organic 
pollution than the IBE index. 
 
The relationship between the ICM indices and pressures, other than organic pollution, is also 
presented (Table ). The other pressures considered are presented below: 

1. Morphological alteration expressed in terms of Habitat Modification Score (HMS: 
Raven et al., 1997); 
2. Land use expressed in terms of the Land Use Index (LUI), according to scores 
assigned in relation to the percentage of anthropic land use (Feld, 2004); 
3. General degradation expressed in terms of Index of Fluvial Functioning (IFF: 
Siligardi et al., 2000). 
4. Habitat Quality Assessment (HQA: Raven et al., 1997), that within this dataset was 
proved to be an indicator of general degradation (Balestrini et al., 2004) 
 

Table 4. Pearson coefficients of determination for pressures other than organic pollution and ICM indices 
and IBE (AQEM data). N=66. 

 r² p  r² p 
  LUI_catch  HQA 
STAR_ICM index 0.01 0.347 0.51 1E-11
Med_ICM index 0.002 0.741 0.50 4E-11
IBE_EQR 9E-6 0.981 0.36 1E-7
 
  LUI_floodp  IFF 
STAR_ICM index 0.32 6E-7 0.44 1E-9
Med_ICM index 0.29 3E-6 0.38 3E-8
IBE_EQR 0.13 0.003 0.21 9E-5
 
  HMS  INT_press 
STAR_ICM index 0.09 0.013 0.42 4E-9
Med_ICM index 0.06 0.049 0.37 8E-8
IBE_EQR 0.02 0.317 0.19 0.0002

 
The different pressures that have been averaged and combined in order to obtain an integrated 
pressure index include: HMS, LUI, HQA (even if not always linked to general degradation), IFF 
and the combined organic pollution index. Results showed that the best performing index in relation 
to the combination of pressures is the STAR_ICMi. Low Pearson coefficients are found with HMS 
because sites with poor communities affected by organic pollution can have a very good 
morphology. The relationship between metrics and land use at the catchment level is not significant, 
while it is significant for land use in the floodplain. This seems to be confirmed by Wasson et al 
(contribution to REBECCA WP4 deliverable), who demonstrated that land use at the buffer level 
can show higher relationships with biota than that at catchment level. In the dataset presented here, 
organic pollution generally represents the strongest impact at sites and Pearson coefficients are 
higher between biological metrics and the organic pollution index than with integrated pressures. 

 
 
Some examples from Slovak data 
 



The relationship between selected biological metrics (ASPT, Saprobic Index and STAR_ICMi) and 
single parameters indicating organic pollution were analyzed by calculating Pearson coefficients. 
The selected biological metrics were predominantly intended to assess organic pollution (saprobic 
and ASPT) and are used in the Intercalibration exercise (STAR ICMi) over a large part of Europe. 
The first stage was to evaluate the performance of single metrics by calculating their correlations 
with single chemical parameter concentrations (Table 5). 
 
Table 5. Pearson coefficients of determination between selected metrics and single chemical parameters.  

 r² p N r² p N 

BOD5  TP 
Czech_saprobic 0.42 0 256  Czech_saprobic 0.15 7.2E-11 259 

ASPT 0.27 8.5E-19 256  ASPT 0.18 1.4E-12 259 
STAR_ICMi 0.32 3.5E-23 256  STAR_ICMi 0.19 8.9E-14 259 

      
N-NH4  N-NO2 

Czech_saprobic 0.09 2.1E-06 252  Czech_saprobic 0.29 4.8E-20 253 
ASPT 0.12 2.1E-08 252  ASPT 0.24 1.3E-16 253 

STAR_ICMi 0.11 4E-08 252  STAR_ICMi 0.28 2.1E-19 253 
      

N-NO3  P-PO4 
Czech_saprobic 0.24 8.5E-17 253  Czech_saprobic 0.03 0.26551 48 

ASPTn 0.18 1.2E-12 253  ASPTn 0.06 0.09411 48 
STAR_ICMi 0.24 5.2E-17 253  STAR_ICMi 0.08 0.05125 48 

 
The highest coefficient of determination occured between the Czech saprobic index and BOD5. Of 
the chemical parameter considered in general, BOD5 seemed to show the best correlation with 
biology. Correlations between orthophosphate and selected metrics were not significant (note that 
data availability is scarce). The other chemical parameters do not show very high determination 
coefficients (r2 always < 0.3), and gave a similar performance with all of the biological metrics. The 
Saprobic index performed quite well to detect organic pollution but, in most cases, the STAR_ICMi 
gave similar results. It should be noted that the saprobic index is based on specific taxa 
identification while ASPT and the STAR_ICMi are based on family level identification. Even if 
species level identification is very useful for the detection of particular impact types, in some cases 
family level identification can give similar results with much less taxonomic effort (Hewlett, 2000). 
Moreover it has to be emphasized that the ICMi is structured to detect general degradation, thus it is 
not expected to have as strong a relationship with organic pollution as the saprobic index, which is 
dedicated to detect this impact. 

 
The second stage tested the combined chemical descriptor against the biological metrics. Table 6 
reports the calculated r2 values.  
 
Table 6. Pearson coefficients of determination between selected biological metrics and the different options 
of combining chemical parameters in Slovak data. 

 r² p N 
Org_descriptor 

Czech_saprobic 0.51 0 259
ASPT 0.33 3.9E-24 259
STAR _ICMi 0.42 0 259

  
The calculation of determination coefficients between combined chemical data and biological 
metrics confirm the strong performance of the Saprobic index. The second best performing metric is 
the STAR_ICMi, confirming the fact that combining information derived from different 



components of the community gives better results than considering only one aspect even when 
considering only one impact type (Brabec et al., 2004; Buffagni et al., 2004; Camargo et al., 2004; 
Ofenböck et al., 2004).  
 
When assessing the response of biological metrics to chemical water quality (e.g. organic 
pollution), the approach of combining single chemical parameters into an integrated indicator gives 
better correlations than chemical variables considered individually.  
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1 Introduction 
This brief report provides some results related to the relationships between large scale anthropic pressures, 
evaluated through a land cover index, and the biological response of river invertebrates.  

These results are derived from the REBECCA WP4 deliverable that will be published at the end of autumn 
2006. Detailed information on the analyses run and on the data used will be found in this deliverable. 

One of the aims of the project was to investigate the relationship between combined pressures and biological 
metrics. The basin and riparian corridors land cover was selected as the best indicator to evaluate large scale 
pressures, taking into account most of the driving forces leading to physico-chemical and hydro-
morphological impacts at the river scale. The first stage was to derive a land cover pressure index in order to 
provide a single descriptor of large scale combined pressures. The invertebrate response was evaluated in 
using the Intercalibration Common Metric index (ICMi), especially developed for the purpose of the 
Intercalibration (IC) process. 

 
2 Methods 
In a first step, diagnostic models based upon Partial Least Squares (PLS) regressions were developed to 
evaluate the correlation between the ICMi and land cover categories. This kind of model allows to attribute 
to each land cover category a coefficient of impact upon the biological index. 

Land cover was evaluated by the mean of the CORINE Land Cover (CLC) spatial database. For France, we 
used 4 categories of land cover variables 

- Urban and artificial areas (variable : artif); 
- High impact agriculture (variable : agrii), mainly arable land; 
- Low impact agriculture (variable : agrif), mainly pastures; 
- Forests and natural areas (variable : espnat). 

PLS regressions were run between these four land cover variables and the ICMi in order to build an 
integrated land cover pressure index. For each site, the land cover was calculated for the whole basin  of the 
site (catchment scale), and within a local riparian buffer (river corridor scale).  

These GIS delineated buffers were 3 km long, with a total width varying from 100m for the low order 
streams (order 1 to 3 in Strahler’s ordination) to 1200 m for the large rivers (order 7). The corresponding 
land cover variables are denominated artifbuf, agriibuf, agrifbuf and espnatbuf. 

The biological data are those used by France for the river invertebrates IC process, for the 3 GIGs (Alpine, 
Central Baltic and Mediterranean) : 490 sites from A1, A2, C1, C2, C3, C4, C6, M1, M4, corresponding to 
1593 samples. Invertebrates were collected in using the field protocol of the normalized French IBGN 
method, but with quantitative laboratory evaluation allowing to calculate the ICM index.  

 



3 Diagnostic PLS models linking ICMi to land cover categories 
3.1 PLS Model at the catchment scale 

A PLS regression between the average ICMi of the sites and the catchment land cover was run for the whole 
French IC dataset. The determination coefficient of the model is 15.6%. The normalized regression 
coefficients of land cover variables are presented in figure 1 and table 1.  

 

 
Figure 1. Standardized coefficients (and significative level : “*” p‐value <= 0.05, “ns” non‐significative) of the 
PLS regression between catchment  land cover variables (artif, agrii, agrif, espnat) and ICMi; data from the 
French invertebrates IC dataset. 
 

Variable Coefficient 
artif -0.258 
agrii -0.156 
agrif 0.109 

espnat 0.094 
 
Table  1.  Values  of  the  standardized  coefficients  of  the  PLS  regression  between  catchment  land  cover 
variables (artif, agrii, agrif, espnat) and ICMi; data from the French invertebrates IC dataset. 
 
3.2 PLS Model at the river corridor scale 

Similarly, a PLS regression between the average ICMi of the sites and the river corridor land cover was run 
on the same dataset. The determination coefficient of the model is 10.8%. The normalized regression 
coefficients of land cover variables are presented in figure 2 and table 2. 
 

Variable Coefficient 
artifbuf -0.205 
agriibuf -0.140 
agrifbuf 0.117 

espnatbuf 0.090 
Table  2. Values  of  the  standardized  coefficients  of  the PLS  regression  between  river  corridor  land  cover 
variables (artifbuf, agriibuf, agrifbuf, espnatbuf) and ICMi PLS Model; data from the French invertebrates IC 
dataset. 

 



 
Figure 2. Standardized coefficients (and significative level : “*” p‐value <= 0.05, “ns” non‐significative) of the 
PLS regression between river corridor land cover variables (artifbuf, agriibuf, agrifbuf, espnatbuf) and ICMi; 
data from the French invertebrates IC dataset. 
 
4 Range of variation of land cover variables 
However, all the land cover variables do not vary in the same range : while the agricultural or natural areas 
can cover the entire basin, a small share of artificial areas yet represents a huge human pressure. The range of 
variation of each land cover category, at the catchment and corridor scale, is reported in the table 3. For 
instance, in the basins of the tested sites, the 95th percentile of the urban land cover (artif) is only 10%, while 
the 95th percentile of arable land (agrii) is 78%. The 95th percentiles of these distributions allow to determine 
a realistic maximum range of variation for each variable.  

 

 artif agrii agrif espnat artifbuf agriibuf agrifbuf espnatbuf

Minimum 0% 0% 0% 0% 0% 0% 0% 0% 

95th percentile 10% 78% 70% 94% 34% 93% 99% 95% 

Maximum 47% 95% 97% 100% 97% 100% 100% 100% 
Table  3.  Distribution  of  the  land  cover  variables  at  the  catchment  and  corridor  scales  in  the  French 
invertebrates IC dataset.  

 

As a consequence, it is not relevant to make a simple linear combination of land cover variable to build a 
land cover pressure index: one percent of variation of urban land cover in the basin, representing 1/10th of the 
possible range of variation of this pressure, cannot be compared to one percent of variation of arable land. It 
seems thus logical to normalize each variable in the land cover index by its 95th percentile. 

 
5 Calculation of a Land Cover Pressure Index 
The results of the PLS models (§3) evidenced different senses and magnitudes of impact of the land cover 
variables upon the ICMi response. To build up an integrated Land Cover Pressure Index (denominated here 
IPOS according to its French acronym: Indice de Pression d’Occupation du Sol), the idea was to combine 
both previous results : the determination coefficients of the PLS models give an “impact factor” of the land 
cover variables, and the 95th percentiles of the distributions in the whole French dataset give a realistic range 
of variation of the same variables. We used then a linear combination of the land cover variables weighted by 
the PLS determination coefficients and normalized according to the 95th percentile of their distribution. 

The general formula of the IPOS index can be written like in equation 1 : 
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According to the previous results, the IPOS index for the basin land cover pressure (IPOSbassin) is given by 
equation 2: 
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And for the river corridor land cover pressure, the IPOS index (IPOSbuffer) is given by equation 3: 
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Both indices can take positive and negative values because of PLS coefficients. 

 
6 Relationships between the IPOS Index and Chemical pressures 
Does this index represent correctly the pressures impacting river invertebrates? This question was addressed 
in analysing the correlation between the IPOS indices (basin and corridor) and chemical parameters 
characterising the samples of the French IC dataset; hydro-morphological pressure at the site scale were not 
available for this dataset. A Multiple PLS regression was realised between IPOSbassin and IPOSbuffer. and mean 
concentrations of selected chemicals (NO3, PO4, BOD5 and NH4) corresponding to the year preceding a 
sample date (11 months before, 1 after).  

The correlations map allows to visualize on the first two components the correlations between IPOS and 
chemical parameters (figure 3). The determination coefficient is 35% with IPOSbasin, but only 5% with 
IPOSbuffer. The normalized regression coefficients of chemical variables are presented in figures 4 (A and B) 
for the IPOS index at the basin and corridor level. IPOSbassin is principally explained by NO3 and a 
combination of PO4, BOD5 and NH4. Conversely, IPOSbuffer has no significant relationships with chemical 
variables. 

 

 
Figure  3.  Correlation  circle  of multiple  PLS  regression  between mean  annual  concentration  of  chemical 
parameters and the land cover pressure index for the basin (IPOS) and river corridor (IPOSBUF); data from 
the French invertebrates IC dataset.  
 
 



 
Figure 4.  Standardized coefficients (and significative level : “*” p‐value <= 0.05, “ns” non‐significative) of the 
PLS regression between chemical variables and the IPOS index for the basin (A) and the river corridor (B); 
data from the French invertebrates IC dataset. 

 

From these results, we can infer that the IPOS index at the basin scale is an indicator of the chemical 
pressures coming both from urban and agricultural areas, while the IPOS at the corridor level is not 
correlated to the pollution discharge, and indicates a local, physical pressure at the site scale.  

 
7 Relationships between IPOS and ICMi 
7.1 Linear regressions between ICMi and IPOS 

There are a clear negative relationships between the average ICMi of the sites and the IPOS at both basin and 
riparian corridor scales (figure 5). The determination coefficient of the linear regression between average 
ICMi and IPOSbassin is 16%, and 11% between average ICMi and IPOSbuffer. In both cases, the average ICMi 
variability explained by the combined land cover index is equivalent to that explained by the PLS model with 
the 4 independent land cover variables. 

 

 
Figure 5. Linear regression between ICMi and land cover pressure index (IPOS) at the basin scale (A) and at 
the river corridor scale (B); data from the French invertebrates IC dataset. 

 

7.2 Combined relationships at both catchment and river corridor scale 

When combining the two land cover pressure indices, the value of the determination coefficient of the linear 
regression between average ICMi and (IPOSbassin + IPOSbuffer) is 18%. This represents only 2 % more than 
the IPOSbassin alone. These two levels of pressure are intercorrelated and their effects cannot be added. 

However, the standardized coefficients of the PLS regression demonstrate that the effects of both indices are 
well balanced between the river corridor and the catchment level (figure 6). 

 



 
Figure  6.  Standardized  coefficients  of  regression  between  ICMi  and  land  cover  pressure  indices  at  the 
catchment scale (IPOS) and river corridor level (IPOSbuf); data from the French invertebrates IC dataset. 
 
Moreover, a complete PLS regression between average ICMi and (IPOSbasin + IPOSbuffer + NO3 + NH4 + PO4 
+ DBO5) give a determination coefficient of 21 %. This represent only 3% more than without chemical 
variables. 
 
7.3 Relationships for the different IC Types 

Linear regressions were realised between the average ICMi of the sites and the IPOS at the catchment and 
river corridor levels for each IC type, for the French Alpine and CB GIG datasets; determination coefficient 
are given in table 4. 

 
 Level 

IC Type Catchment River corridor
R-A1 10% 21% 
R-A2 20% 21% 
R-C1 0.5% 12% 
R-C2 16% 5% 
R-C3 28% 25% 
R-C4 8% 9% 
R-C6 13% 6% 

Table 4. Determination coefficient of  linear regression between  ICMi and  IPOS at  the catchment and river 
corridor levels by IC type 
 
Except for the type R-C1, corresponding in France to the sandy “Landes” region mainly covered with pine 
forests, the correlations with the basin IPOS vary between 8% and 28% for the different types, with highest 
values in the mountainous regions (R-A2 and R-C3). The correlations with the river corridor IPOS vary 
between 5% and 25%, here also with higher values in the mountains.  

 
8 Conclusions  
The ICM index was derived to assess at the European scale the ecological status of the invertebrate quality 
element in rivers. Other works (see annexes 2.2.5.1 and 2.2.5.2) have demonstrated its response to various 
pressures including chemical and hydro-morphological ones evaluated at the site scale. We examined in 
France only the relationships between average ICMi calculated for each site and a land cover pressure index 
(IPOS) evaluated at the basin and at the river corridor scale.  

The results presented here evidenced clear and significant negative relationships between average ICMi and 
IPOS evaluated at both basin and riparian corridor scale for the whole French IC dataset corresponding to the 



Alpine and CB GIG types. Theses relationships vary according to the types, but are evident for all the types 
(except for the basin IPOS in the R-C1 dataset). 

The basin IPOS is well correlated to the urban and agricultural pollution, while the corridor IPOS is not. 
Thus the correlation between the average ICMi and the corridor IPOS is a response of the fauna to the 
physical pressures exerted on the river margins.  

The relatively low determination coefficients observed in some relationships can be explained by two 
reasons :  

- The land cover pressure index is a general descriptor of the driving forces, mainly urban and 
agricultural, acting at the basin and riparian corridor scales, and thus cannot represent with a high 
precision the actual chemical and hydro-morphological pressures exerted on the river site.  

- The biological data used here come from the French monitoring network, thus adding an 
important spatial and temporal variability when compared to smaller datasets especially taken for 
a scientific project, like AQEM-STAR. (This is evidenced also by the comparison between the 
AQEM-STAR and ARPA monitoring network  datasets in Italy, see annex 2.2.5.2) 

Taking into account these limitations, these results demonstrate that the ICM index used in the IC exercise is 
actually responding to a wide range of combined human pressures, and is relevant to evaluate the 
invertebrates ecological status in European rivers.  

 
Lyon, october 26th, 2006 

 
 
 


